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In this paper we perform high-resolution one-dimensional time-dependent numerical
simulations of detonations for which the underlying steady planar waves are of the
pathological type. Pathological detonations are possible when there are endothermic
or dissipative effects in the system. We consider a system with two consecutive
irreversible reactions A→B→C, with an Arrhenius form of the reaction rates and
the second reaction endothermic. The self-sustaining steady planar detonation then
travels at the minimum speed, which is faster than the Chapman–Jouguet speed,
and has an internal frozen sonic point at which the thermicity vanishes. The flow
downstream of this sonic point is supersonic if the detonation is unsupported or
subsonic if the detonation is supported, the two cases having very different detonation
wave structures. We compare and contrast the long-time nonlinear behaviour of the
unsupported and supported pathological detonations. We show that the stability
of the supported and unsupported steady waves can be quite different, even near
the stability boundary. Indeed, the unsupported detonation can easily fail while the
supported wave propagates as a pulsating detonation. We also consider overdriven
detonations for the system. We show that, in agreement with a linear stability analysis,
the stability of the steady wave is very sensitive to the degree of overdrive near the
pathological detonation speed, and that increasing the overdrive can destabilize the
wave, in contrast to systems where the self-sustaining wave is the Chapman–Jouguet
detonation.

1. Introduction
The governing equations for detonation waves (supersonic shock-induced combus-

tion waves) admit solutions in which the flow is steady (in the shock frame) and
one-dimensional, the so-called Zeldovich–Neumann–Döring waves (see, for example,
von Neumann 1942). These waves can be self-sustaining, where the heat released by
the reactions is exactly enough to continue to drive the shock. There are two possible
forms for such self-sustained steady waves (Wood & Salsburg 1960). If the system in
not too complex, then the self-sustaining wave is the Chapman–Jouguet (CJ) deton-
ation, which travels at the minimum possible speed and the flow is then equilibrium
sonic at the end of the reaction zone. However, complexities in the system (such as
endothermic stages of the reaction, mole changes during the reaction, more than one
reversible reaction, transport effects, relaxational degrees of freedom; see Fickett &
Davis 1979 for examples) can cause the self-sustaining wave to be of the so-called
pathological type, and then the CJ wave does not exist. Such pathological detonations
travel faster than the CJ speed and the reaction zone has an internal frozen sonic
point (the pathological point) at which the thermicity vanishes. The detonation has
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two possible wave structures downstream of the sonic point, supersonic or subsonic,
corresponding to unsupported and supported pathological detonations respectively.
For instance, in astrophysics, due to an endothermic stage of the reactions, pathologi-
cal detonations can occur in white dwarf stars, which are believed to be responsible
for some supernovae events (Sharpe 1999a).

Overdriven detonations, which travel faster than the self-sustaining speed and are
subsonic throughout, are also possible and correspond to piston-supported deton-
ations.

Experiments (Fickett & Davis 1979) reveal that detonations usually have a compli-
cated three-dimensional time-dependent structure (cellular detonations). However, in
some cases the flow is principally one-dimensional, where the front oscillates longi-
tudinally. Such galloping detonations are seen when blunt bodies are fired into reactive
gases at supersonic velocities (e.g. Alpert & Toong 1972; Lehr 1972). There appear
to be two types of galloping detonations, which Fickett & Davis (1979) classify as
fast and slow galloping detonations. In the fast gallop the period is very regular, but
for the slow gallop the period is irregular and much longer. The slow gallop is also
seen (very rarely) in tubes with square cross-sections, in which the detonation fails
and decomposes into a flame decoupled from the leading shock. After an induction
time the detonation is re-ignited, only to fail again, and so the process is repeated
(Saint-Cloud et al. 1972).

In these cases the steady planar wave is unstable to one-dimensional perturbations.
Hence a first step in understanding such galloping detonations is a linear stability
analysis. Various methods have been developed for determining the linear stability
response of detonation waves (Erpenbeck 1962; Lee & Stewart 1990; Sharpe 1997).
These have mostly been applied to simple systems for which the self-sustaining wave
is of the CJ type (Erpenbeck 1964; Lee & Stewart 1990; Sharpe 1997; Short &
Quirk 1997). However, Sharpe (1999b) determined the linear stability of the system
used in this paper, where the self-sustaining detonation is of the pathological type
due to a second reaction being endothermic. He found that the linear stability of
pathological detonations was qualitatively the same as for CJ detonations. However,
he also found that the stability of overdriven detonations was very sensitive to the
detonation speed near the self-sustaining speed, and increasing the overdrive could
destabilize the steady wave, which is very different behaviour than for systems where
the self-sustaining detonation is CJ.

One-dimensional time-dependent numerical calculations for CJ detonations and
their overdriven counterparts (Fickett & Wood 1966; Bourlioux, Majda & Roytburd
1991; Williams, Bauwens & Oran 1996; Short & Quirk 1997; Sharpe & Falle 1999)
have shown that the linear stability analysis gives an excellent prediction for the
stability boundary, and for the frequency of oscillation if the detonation is not too
unstable. However, for detonations further from the stability boundary, nonlinear
effects quickly become important, and irregular oscillations are observed. Both the
slow and fast gallop, and the detonation failure are seen in such one-dimensional
simulations.

In this paper we consider the long-time unsteady behaviour of a system where the
self-sustaining detonation is of the pathological type, specifically the system considered
in the linear stability analysis of Sharpe (1999b). In the linear approximation, no
perturbations downstream of the sonic point can affect the region of the detonation
between the shock and the sonic point, and hence the linear stability analysis does not
take into account whether the pathological detonations is supported or unsupported.
However, as suggested in Sharpe (1999b), since the structures of the supported and
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unsupported steady pathological detonation waves are quite different downstream of
the sonic point, the long time nonlinear stability of the two waves might also be
very different, especially for very unstable detonations. We also investigate whether
the sensitive dependence of the linear stability of overdriven detonations on the
detonation speed, for speeds near the pathological speed, is seen in the nonlinear
simulations.

In § 2 we give the governing equations and non-dimensionalization. The steady
one-dimensional waves are then considered in § 3. The numerical method is discussed
in § 4, while the results and conclusions are given in § 5 and § 6.

2. Governing equations
In this paper we use a model system with two consecutive irreversible reactions

A→B→C, with Arrhenius forms of the reaction rates and the second reaction en-
dothermic. The governing equations are, in one dimension,

Dρ

Dt
+ ρ

∂u

∂x
= 0, ρ

Du

Dt
= −∂p

∂x
,

De

Dt
+ p

Dρ−1
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Dλ1
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Dt
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∂

∂t
+ u

∂
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,

 (2.1)

where u is the fluid velocity in the laboratory frame, ρ the density, p the pressure, e
the internal energy per unit mass, λi the reaction progress variable of the ith reaction
(i = 1 or 2, with λi = 1 for unburnt and λi = 0 for burnt), γ the (constant) ratio of
specific heats and Wi the reaction rate of the ith reaction. The internal energy per
unit mass is given by

e(ρ, p, λ) =
p

(γ − 1)ρ
− Q, (2.2)

where

Q = q1(1− λ1) + q2(1− λ2) (2.3)

is the total heat release and qi is the constant heat of reaction for the ith reaction.
Note that q2 < 0 since the second reaction is assumed to be endothermic. The mass
fractions xA, xB , xC of species A, B, C are related to the reaction progress variables
by

xA = λ1, xB = λ2 − λ1, xC = 1− λ2. (2.4)

We assume an Arrhenius form of the reaction rates and a perfect gas:

W1 = −K1ρλ1e
(−TA1/T ), W2 = K2ρ(λ1 − λ2)e

(−TA2/T ), T =
µp

Rρ
, c2 =

γp

ρ
, (2.5)

where T is the temperature, c the sound speed, TAi the activation temperature of the
ith reaction, Ki the constant rate coefficient for the ith reaction, R the universal gas
constant and µ the (constant) mean molecular weight. It is also useful to define the
sonic parameter

η = c2 − u2. (2.6)

Henceforth we use an overbar to denote dimensional quantities, a zero (0) subscript
to denote steady unperturbed quantities, an s superscript to denote quantities at a
sonic point, a p superscript to denote quantities at the pathological point, an infinity
(∞) superscript to denote quantities at the end of the reaction zone and a minus (−)
subscript to denote quantities in the ambient upstream state.
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We non-dimensionalize by putting

ρ =
ρ̄

ρ̄−
, v =

v̄

D̄
, p =

p̄

ρ̄−D̄2
, T =

p

ρ
=
R̄T̄

µD̄2
,

t =
K̄1t̄

α1

, r =
K̄1r̄

α1D̄
, q1 =

q̄1

D̄2
, q2 =

q̄2

D̄2
,

 (2.7)

where D̄ is the speed of the steady detonation wave and α1 is a scale factor chosen so
that the characteristic length scale is the half-reaction length of the first reaction, i.e.
the distance between the shock and the point at which λ1 = 1/2 in the steady wave.
We then define non-dimensional activation temperatures, τ1, τ2, by

τ1 =
R̄T̄A1

µD̄2
, τ2 =

R̄T̄A2

µD̄2
(2.8)

and the non-dimensional pressure in the ambient material by

p− =
p̄−
ρ̄−D̄2

. (2.9)

In terms of these non-dimensional variables (2.1) are unchanged in form except
that the reaction rates are now given by

W1 = −α1ρλ1 exp (−τ1ρ/p), W2 = α2ρ(λ1 − λ2) exp (−τ2ρ/p), (2.10)

where α2 = α1K̄2/K̄1. Let α = α2/α1.
The majority of the results of previous work on the stability of detonations has

been given in terms of the more familiar scalings of Erpenbeck (1964), who scaled
the activation temperature and heat of reaction by the temperature in the ambient
material. In terms of this scaling we define

E1 =
T̄A1

T̄−
, E2 =

T̄A2

T̄−
, Q1 =

q̄1µ

R̄T̄−
, Q2 =

q̄2µ

R̄T̄−
. (2.11)

Note that

T̄− =
µp̄−
R̄ρ̄−

=
µ

R̄
D̄2p− (2.12)

so that the conversion between his scalings and ours is given by

Ei =
τi

p−
, Qi =

qi

p−
. (2.13)

Throughout this paper we set

γ = 1.2, α = 1, (2.14)

and, unless otherwise specified, we use the values of the heat releases

Q1 = 100, Q2 = −75. (2.15)

Note that for τ1 = τ2 = 0 this reduces to the pathological detonation model of Fickett
& Davis (1979).

3. Steady one-dimensional detonations
In this section we describe the steady one-dimensional detonation waves for our

model. For a discussion of the qualitative nature of such solutions based on Hugoniot
curves and Rayleigh lines see Fickett & Davis (1979) or Sharpe (1999b).
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In terms of our non-dimensional variables, the steady detonation is assumed to
travel at unit speed in the positive x-direction in the laboratory frame. We transform
to a frame moving with the shock, i.e.

x = xl − t, u = ul − 1, (3.1)

where xl and ul are the position and the fluid velocity in the laboratory frame. The
shock is now stationary at x = 0 and the detonation wave lies in the negative-x
half-plane.

Conservation of mass and momentum then give

ρ0u0 = −1, p0 + ρ0u
2
0 = p− + 1, (3.2)

which allows us to write the thermodynamic variables in terms of u0 alone:

ρ0 = − 1

u0

, p0 = p− + 1 + u0. (3.3)

The sonic value of u0 can then be found from

η0 = c2
0 − u2

0 = −γ(p− + 1 + u0)u0 − u2
0 = 0, (3.4)

which gives

us0 = −γ(p− + 1)

γ + 1
. (3.5)

Conservation of energy gives

γp0

(γ − 1)ρ0

+
1

2
u2

0 =
1

2
+

γp−
(γ − 1)

+ Q0, (3.6)

where

Q0 = q1(1− λ10) + q2(1− λ20). (3.7)

This gives a relation between the thermodynamic and chemical variables:

Q0 = − (u0 + 1)

2(γ − 1)
[(γ + 1)u0 + 2γp− + γ − 1] (3.8)

or

u0 = −γ(p− + 1)

γ + 1
±
[
(1− γp−)2 − 2(γ2 − 1)Q0

]1/2
γ + 1

= us0 ±
[
2(γ2 − 1)(Qs0 − Q0)

]1/2
γ + 1

, (3.9)

so that u0 and hence the other thermodynamic variables are double valued for a given
value of the total heat release, everywhere except at a sonic point. The thermodynamic
quantities therefore have a subsonic, or strong, branch corresponding to the plus sign
and a supersonic, or weak, branch corresponding to the minus sign and the solution
can only pass continuously from one branch to the other at a sonic point. Note that

dQ0

du0

=
η0

(γ − 1)u0

(3.10)

so that
du0

dx
=
u0(γ − 1)

η0

dQ0

dx
, (3.11)
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which diverges at a sonic point unless dQ0/dx = 0 there, i.e. the total heat release
must be a maximum there, otherwise no steady solution can exist.

At the shock λ10 = λ20 = 1, Q0 = 0 and the flow is subsonic so that

u0+ =
1− 2γp− − γ

γ + 1
. (3.12)

The weak branch gives u0 = −1 at x = 0, i.e. it corresponds to an unshocked state.
At the end of the reaction zone λ10 = λ20 = 0 and Q0 = q1 + q2 which gives

u∞0 = −γ(p− + 1)

γ + 1
±
[
(1− γp−)2 − 2(γ2 − 1)(q1 + q2)

]1/2
γ + 1

. (3.13)

For pathological detonations, the detonation speed, D̄p, cannot be determined
analytically, but is an eigenvalue of the governing equations. However, although the
CJ wave is forbidden when the detonation is pathological, one can still determine
what the CJ speed should be. The CJ condition is that the flow is sonic for the
complete reaction value of Q0, which gives

qCJ1 + qCJ2 =
(1− γpCJ− )2

2(γ2 − 1)
. (3.14)

We define the degree of overdrive with respect to the CJ speed, fCJ , by

fCJ =

(
D̄p

D̄CJ

)2

. (3.15)

Then

p− =
pCJ−
fCJ

, qi =
qCJi
fCJ

, τi =
τCJi
fCJ

(i = 1, 2). (3.16)

For given values of E1, E2, Q1 and Q2, p
CJ− can be determined from (3.14) and (2.13),

and then τCJ1 , τCJ2 , qCJ1 and qCJ2 can be determined from (2.13). It remains to determine
fCJ .

For the one-dimensional steady solution, the rate equations become

dλ10

dx
= −α1λ10

u0

exp
(
τ1/((p− + u0 + 1)u0)

)
,

dλ20

dx
=
α2(λ10 − λ20)

u0

exp
(
τ2/((p− + u0 + 1)u0)

)
,

 (3.17)

with u0 given by (3.9). Alternatively, we can also use λ10 as the independent variable,
in which case we have

dλ20

dλ10

=
α(λ20 − λ10)

λ10

exp
(
(τ2 − τ1)/((p− + u0 + 1)u0)

)
. (3.18)

The scale factor α1 is given by

α1 =

∫ 1/2

0

u0

λ10

exp
(−τ1/((p− + u0 + 1)u0)

)
dλ10. (3.19)

Integrating (3.19) together with (3.18) gives α1.
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Using (3.7) and (3.8) to write λ20 in terms of λ10 and u0, we obtain

du0

dλ10

=
(γ − 1)u0

η0λ10

(α[Q0−(q1 + q2)(1− λ10)]

× exp ((τ2 − τ1)/((p− + u0 + 1)u0))− q1λ10), (3.20)

with Q0 given by (3.8).
The pathological condition is that the flow is sonic when the thermicity is zero, i.e.

when dQ0/dx = 0. Since

dQ0

dx
= −q1

dλ10

dx
− q2

dλ20

dx
(3.21)

this gives the values of λ10 and λ20 at the pathological point:

λ
p
10 =

β[Qs0 − (q1 + q2)]

q1 − β(q1 + q2)
, λ

p
20 =

(βq2 − q1)λ
p
10

βq2

, (3.22)

where

βi = αi exp
(
τi/((p− + us0 + 1)us0)

)
, β =

β2

β1

. (3.23)

We use an iterative procedure to find the pathological detonation speed. For a trial
value of fCJ , we integrate (3.20) from the shock into the reaction zone. If fCJ is too
small then the solution terminates at a sonic point and there is no steady solution,
whereas if fCJ is too large the solution corresponds to an overdriven detonation,
which reaches a maximum value of the heat release and then proceeds to the strong
equilibrium point. We thus obtain upper and lower bounds for the pathological degree
of overdrive, fCJ , and we can use these to iterate using bisection to obtain fCJ to any
desired degree of accuracy. A check on the convergence is given by the value of λ10

and λ20 as predicted by (3.22) for the current value of fCJ compared to the values at
the sonic point or at the maximum of the heat release.

Once the pathological detonation speed has been found, it remains to determine
the complete steady structure beyond the sonic point. It is also good practice to
integrate away from sonic points. In order to do so we find asymptotic expansions
for the steady variables near the pathological point on each branch of the solution
and integrate either to the shock or to an equilibrium point.

Consider the branch of the solution between the shock and the pathological point.
We define a new variable

w = λ10 − λp10 (3.24)

so that w is small near the pathological point, and expand λ20 in terms of w as

λ20 = λ
p
20 + l1w + l2w

2 + l3w
3 + · · · , (3.25)

where

li =
1

i!

(
diλ20

dwi

)p
=

1

i!

(
diλ20

dλi10

)p
(3.26)

with l1 = −q1/q2 since dQ0/dw = 0 at the pathological point. Expanding (3.9) then
gives

u0 = us0 +

(
2(γ − 1)q2l2

γ + 1

)1/2

w + · · · (3.27)
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Figure 1. Steady pathological detonation with E1 = 21, E2 = 20, Q1 = 100, Q2 = −75, α = 1,
γ = 1.2. Pressure, p0, versus distance behind shock, x. The solid line is the branch of the solution
between the shock and the pathological point, the dotted line is the branch between the pathological
point and the weak equilibrium point (corresponding to the unsupported wave) and the dashed line
is the branch between the pathological point and the strong equilibrium point (corresponding to
the supported wave).

so that

l2 =
(γ + 1)

2(γ − 1)q2

[(
du0

dw

)p]2

. (3.28)

Substituting into (3.18) and comparing powers of w gives the li. At O(w) we obtain

(γ + 1)

(γ − 1)q2

[(
du0

dw

)p]2

+
γ(γ − 1)q1(τ1 − τ2)

q2(u
s
0)

3

(
du0

dw

)p
+
β(q1 + q2)− q1

q2λ
p
10

= 0. (3.29)

Since
(
du0/dw

)p
> 0 on the branch between the shock and the pathological point,

we must take the positive root.
Similarly, we can obtain asymptotic solutions in terms of w near the pathologi-

cal point on the branches of the solution between the pathological point and the
strong and weak equilibrium points. We can then use these asymptotic solutions as
initial conditions with which to integrate (3.17) away from the sonic pathological
point. Figure 1 shows the steady solution for both the supported and unsupported
pathological detonations when E1 = 21 and E2 = 20. For these parameters, according
to the linear stability analysis, the steady detonation is slightly unstable to one-
dimensional disturbances. Note that for the supported pathological detonation, which
goes to the strong equilibrium point, there is a discontinuity in the derivatives of the
thermodynamic quantities at the pathological point. Note also that the unsupported
pathological detonation takes much longer to reach equilibrium compared to the
supported detonation due to the lower temperatures.

For overdriven detonations, we define the degree of overdrive by

f =

(
D̄

D̄p

)2

, (3.30)

i.e. with respect to the pathological speed, and then the pathological detonation has
f = 1. Figure 2 shows the steady solution for an overdriven detonation with E1 = 21,
E2 = 20 and f = 1.1. For overdriven detonations the thermodynamic variables have
a minimum inside the reaction zone, but their derivatives are continuous there. The
structure of the supported pathological detonation is the limit of the structure of
overdriven detonations as f → 1 from above.



Stability of pathological detonations 347

1.0

0.8

0.6

0.4

0.2
–6 –5 –4 –3 –2 –1 0

x

p
0

Figure 2. Overdriven detonation with E1 = 21, E2 = 20, Q1 = 100, Q2 = −75, α = 1, γ = 1.2
and f = 1.1. Pressure, p0, versus distance behind shock, x.

4. Numerical method
4.1. Numerical code

To perform the numerical simulations in this paper we use the hierarchical adaptive
code, µCobra, which has been developed for industrial applications by Mantis Nu-
merics Ltd., and is described in Falle & Giddings (1993) and Falle (1991), but for the
sake of completeness it is worth summarizing its main features here. It is a second-
order Godunov scheme in which the second-order Riemann problems are constructed
from the primitive variables using a quadratic averaging function. An exact Riemann
solver is used wherever necessary and a linear solver elsewhere. Second-order artificial
dissipation is added to the fluxes determined from the Riemann solution in order to
suppress the Quirk instability (Quirk 1992) and to remove the entropy oscillations
behind slowly moving shocks. The form of this additional dissipation is described
in Falle & Komissarov (1996). The code uses a hierarchical series of Cartesian grids
G0, . . . , GN , so that grid Gn has mesh spacing h/2n, where h is the mesh spacing on
the base grid G0. Grids G0 and G1 cover the entire domain, but the higher grids only
occupy regions where increased resolution is required.

4.2. Initial and boundary conditions

The initial data are determined by placing the steady solution, as determined by the
methods in the previous section, on the grid with the shock initially at x = 0 and the
detonation lying to the left. The numerical scheme introduces two perturbations. The
first is due to the initial smearing of the shock over a few grid cells, while the second
is due to the truncation error of the scheme. For high resolution the smearing of the
shock is negligible (Short & Quirk 1997). These perturbations are sufficient to trigger
the instability.

In our simulations the detonation runs from left to right in the positive x-direction.
Since the fluid ahead of the detonation is in its quiescent state, this means that the
right-hand boundary condition is irrelevant provided the shock remains within the
domain. As discussed in Sharpe & Falle (1999), the left-hand boundary condition is
somewhat more difficult. We therefore place the left boundary at least at x = −100,
i.e. 100 half-reaction lengths behind the initial position of the front, and in all cases
impose a zero-gradient condition there. As a test case to ensure this was far enough
behind the front for the shock pressure histories to be independent of the rear
boundary, we performed a series of calculations for the supported detonation with
E1 = 29 and E2 = 20, where the left-hand boundary is placed at different distances
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Figure 3. Shock pressure histories for the supported pathological detonation with E1 = 29
and E2 = 20 when the left-hand boundary is at (a) x = −25 and (b) x = −400.

behind the initial front. For this case the detonation quickly dies and the shock
pressure drops to low values for a long time, so that the shock is moving relatively
slowly and the downstream flow is very subsonic with respect to the front. Hence this
constitutes a rigorous test case since waves reflected from the left-hand boundary can
catch up with the front much more quickly than when the detonation is propagating
at high speeds. Figure 3 shows the shock pressure histories for this case when the
left-hand boundary is placed at (a) x = −25 and (b) at x = −400. The pressure history
when the boundary is at x = −100 is also shown in figure 17(c). In each case the
effective resolution was 256 points per half-reaction length (see § 4.3). As can be seen
from the figures, the detonation quickly fails and the shock pressure remains low for
a long time. However, after about t = 650, there is a re-ignition of the detonation and
the shock pressure becomes very high. There is a small difference in the re-ignition
time, strength and the subsequent flow between the cases when the left-hand boundary
is at x = −25 and x = −400, indicating that the left-hand boundary can affect the
flow if it is not sufficiently far to the left. However, the shock pressure histories for
the cases where the left-hand boundary is at x = −100 and x = −400 are identical
for the time that the calculations have been allowed to run (to t = 800). This shows
that provided the boundary is sufficiently far to the left it has no influence on the
calculation during this time, and x = −100 is indeed sufficiently far behind the front.

Note that for the much longer time calculations shown in figures 4 and 10 the
left-hand boundary was placed at x = −1000.

4.3. Resolution requirements

µCobra controls refinement by comparing the solution of each conserved variable
and also their rates of change on grids Gn and Gn−1. If either of these errors is
greater than given tolerances then the grid is resolved to level Gn+1, n+ 1 6 N. These
conditions can be used to ensure that regions where the flow is changing rapidly, e.g.
shocks, and to some extent the reaction zone, are always resolved to the highest level.
However, to ensure that the flow is always resolved wherever the reactions are fast,
we resolve to the highest level whenever

Wi > ε (4.1)



Stability of pathological detonations 349

where Wi is the reaction rate of the ith reaction (i = 1, 2), and ε is a small value. We
take ε = 0.01.

As we shall see, in some instances the detonation can fail, leading to a weak shock,
followed by a long, almost reactionless, induction zone, which is in turn followed
by a thin ‘fire’ in which the reactions take place. In these cases the induction zone
tends to derefine since the flow is not changing rapidly in that region. However, small
perturbations in the induction zone can produce large disturbances in the position
and velocity of the fire (Buckmaster & Neves 1988), and since the size of perturbations
in the induction zone is controlled by how high the resolution is there, we also ensure
that the induction zone is resolved to the highest level. Indeed, we have found that
there are small differences in the solutions depending on whether the induction zone
is allowed to derefine or not. In order to ensure such regions are also resolved, the
highest grid level is used if

λi > 0.1 (i = 1, 2) (4.2)

and

p > 2p−. (4.3)

This last condition ensures that the quiescent region ahead of the shock is not
unnecessarily refined.

In this paper we use a base grid, G0, with a mesh spacing of one point per
half-reaction length of the steady detonation, and eight refinement levels, giving an
effective resolution of 256 points per half-reaction length. While this may seem at first
glance to be excessive, experience has shown it is necessary, especially for detonations
far from the stability boundary. This is due to the fact that in the unsteady regime
there can be regions where the reactions occur in a very thin region. As the detonation
becomes more unstable, these regions can occur more frequently and become very
much thinner. Hence the amount of resolution required to get even the qualitatively
correct solution increases dramatically as the detonation becomes more unstable
(Sharpe & Falle 1999). Indeed the steady wave itself tends to the ‘square wave’ in
which the reaction take place instantaneously in a fire after a very long induction
zone. Hence the number of points in the steady wave give very little indication of
how many points may be required to resolve the reaction zones and heat release
correctly in the unsteady regime. Secondly, such high resolution may be required to
capture bifurcations in the stability behaviour correctly. For instance, we found that
the position of the neutral stability boundary, as some parameter is varied, obtained
from the numerical simulations depends on the resolution, but converges to exactly
the value predicted by the linear stability analysis. However, at least seven refinement
levels (corresponding to a resolution of 128 points per half-reaction length) were
required to get the stability boundary in exact agreement with the linear stability
analysis. Short & Quirk (1997) have shown for a model three-step chain-branching
reaction that other bifurcations, such as period-doubling bifurcations, may require
more than a 160 points per half-reaction length to capture them properly.

In order to ensure that 256 points per half-reaction length is sufficient to accurately
resolve the flow for unstable detonations far from the stability boundary, a conver-
gence study was performed for the supported detonation with E1 = 23 and E2 = 20.
Figure 4 shows the very long-time shock pressure history for this case when the resol-
ution is 256 points per half-reaction length (cf. figure 16). The pressure history shows
that the long-time behaviour is that of a period-doubled oscillation. This calculation
was repeated for resolutions of 32, 64 and 128 points per half-reaction length (or
five, six and seven refinement levels, respectively). In each case the long-time solution
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Figure 4. Very long-time shock pressure history for the supported pathological detonation with
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Figure 5. Shock pressure history through one period of the saturated oscillations for the supported
pathological detonation with E1 = 23, E2 = 20 and resolutions of 32 (dotted line), 64 (dot-dashed
line), 128 (dashed line) and 256 (solid line) points per half-reaction length.

was that of a period-doubled oscillation, but with somewhat different amplitudes
and frequencies. Figure 5 shows the shock pressure histories through one saturated
oscillation (i.e. between two high-amplitude peaks) for each of the four resolutions.
The time scale has been shifted in each case so that the first peak occurs at t = 0.
The two highest resolutions, corresponding to seven and eight refinement levels, are
in very good agreement, and eight refinement levels are indeed sufficient to give a
well-converged solution in this case. The lower resolutions give rather poor predic-
tions for the period and amplitude of the oscillations. The final periods are 80.7, 81.6,
82.1 and 82.3 for five, six, seven and eight refinement levels respectively.

5. Results
In this section we present the results of the numerical simulations. We display plots

of the pressure just behind the shock versus time as a diagnostic for the nonlinear
stability. We investigate how the stability changes as various parameters are varied.

5.1. Increasing activation temperature of first reaction

Figure 6 shows how the pressure at the strong equilibrium point (for supported patho-
logical detonations), at the weak equilibrium point (for the unsupported wave) and
at the sonic pathological point varies with E1 for the steady pathological detonations.
Note that as the activation temperature increases the strong and weak pressure at the
end of the reaction zone converge to the sonic pressure. As E1 increases, the induction
zone of the first reaction becomes much longer than for the second reaction, with
the result that the delay in the second reaction over the first decreases. This has the
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Figure 6. Variation of pressure at strong equilibrium point (solid line), weak equilibrium point
(dashed line) and pathological point (dotted line) in the steady wave with E1 (E2 = 20).

effect that the detonation becomes less distinctly pathological, so that the sonic point
moves towards the end of the reaction zone. The strong and weak values converge as
the self-sustaining detonation becomes the CJ wave, when the second reaction is fast
enough for the burning to remain exothermic throughout. The detonation is CJ for
E1 > 29.067, and there is then no difference between the supported and unsupported
self-sustaining detonation waves. However, this occurs far from the stability boundary
E1 = 20.96. For pathological detonations away from the boundary where the wave
becomes CJ, the three pressures are very distinct. The strong equilibrium pressure
corresponds to the supported detonation, and hence is the pressure at the piston
supporting the wave. From figure 6 it can be seen that this pressure, and thus the
required piston speed, is rather high. If the detonation speed begins to decrease, the
wave will quickly feel the push of the piston, and hence the speed cannot decrease
too far. For the unsupported wave, however, the equilibrium pressure is low. Owing
to this, and the fact that the wave is unsupported, the shock speed can fall to very
low values without feeling any effects from the downstream fluid, and the detonation
can fail if the shock speed becomes too low. Since the weak pressure is much less
than the corresponding sonic CJ pressure, unsupported pathological detonations can
die more easily than CJ detonations.

In this subsection we investigate how the stability changes for both the unsupported
and supported pathological detonations as the activation temperature of the first
reaction is increased. The linear stability analysis predicts that the detonation becomes
more unstable as E1 is increased, for fixed values of the other parameters (Sharpe
1999b). We fix the activation temperature of the second reaction to E2 = 20, and then
the linear stability analysis predicts stability for E1 < 20.96.

Figure 7 shows the shock pressure history when E1 = 20.96, for both (a) the
unsupported detonation and (b) the supported pathological detonation. As mentioned
in the introduction, the linear stability analysis does not take into account the flow
downstream of the sonic point, and hence predicts that the stability of the unsupported
and supported pathological detonation will be the same. However, except at very
early times (t < 40) the shock pressure histories of the two cases are rather different.
Both oscillate with the about the same period, 49.7 and 49.5 for the unsupported and
supported waves respectively, which are in excellent agreement with the linear stability
prediction of 49.7. For the unsupported detonation the shock pressure oscillates at
a constant amplitude which neither grows nor decays, i.e. the steady detonation is
neutrally stable, again in excellent agreement with the linear stability analysis. For the
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Figure 7. Shock pressure history for E1 = 20.96 and E2 = 20. (a) The unsupported pathological
detonation and (b) the supported pathological detonation.

supported wave, however, the amplitude of the oscillations is much larger and is not
exactly constant. There appears to be a double-mode oscillation with a low-frequency
mode, not predicted by the linear stability analysis, also present. The amplitude also
seems to be slightly decreasing, in which case the steady supported wave is very
slightly stable, in conflict with the linear analysis.

Hence nonlinear effects seem to be important for the supported detonation, even
near the stability boundary predicted by the linear analysis. Figure 8 shows profiles of
the pressure, temperature and reaction progress variables for the supported detonation,
at four times t = 100.6 (when the shock pressure is at a peak in the oscillation),
t = 112.5, t = 125.2 (when the shock pressure is at a trough in the oscillation) and
t = 137.5, during one oscillation cycle. As the pressure at the leading shock decreases,
a second shock forms immediately after the internal minimum in the pressure. This
is most clearly seen in the profile for t = 125.2. This shock remains quite weak, but
increases in strength as the primary shock pressure drops, and then weakens again
as the primary shock pressure increases. Note that the value of the pressure at the
internal minimum also oscillates as the detonation propagates, but out of phase with
the primary shock pressure (due to the fact that the particle, which is currently at the
minimum pressure, was shocked at an earlier time with a different shock strength).
These effects become more pronounced as E1 is increased.

Figure 9 shows the shock pressure history for the unsupported and supported
pathological detonations, when the activation temperature of the first reaction is
slightly increased to E1 = 21. For this value the linear stability analysis predicts
that the detonation is very slightly unstable, with a single mode of period 49.7. In
this case, the amplitude of the unsupported wave is slowly growing (figure 9a). For
the supported wave however, the amplitude of the oscillation appears to quickly
saturate and the double-mode oscillation is now more clearly visible. The period of
the oscillation is 49.8 for the unsupported wave and 49.5 for the supported wave.

In order to check that the final amplitudes have indeed been reached for the
supported case and that the double-mode instability persists, we performed a much
longer calculation for this case (figure 10). It shows that the amplitudes do indeed
quickly converge and the ultimate nonlinear behaviour appears to involve a period
doubling with a small difference between consecutive amplitudes.
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Figure 8. Profiles of (a) pressure, (b) temperature and (c) reaction progress variables, λ1 (solid lines)
and λ2 (dashed lines), for the supported pathological detonation with E1 = 20.96 and E2 = 20, at
times t = 100.6, 112.5, 125.2 and 137.5.
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Figure 9. Shock pressure history for E1 = 21 and E2 = 20. (a) The unsupported pathological
detonation and (b) the supported pathological detonation.



354 G. J. Sharpe and S. A. E. G. Falle

p

t

0.90

0

0.91

500 1000 1500 2000

Figure 10. Long-time shock pressure history for the supported pathological detonation when
E1 = 21 and E2 = 20.

p

(a)

(b)

p

t

0 200 400 600 800

0.6
0

1.0

200 400 600 800

1.0

1.4

1.4

0.6

Figure 11. Shock pressure history for E1 = 21.5 and E2 = 20. (a) The unsupported pathological
detonation and (b) the supported pathological detonation.

Figure 11 shows the shock pressure histories when E1 = 21.5. In this case the shock
pressure histories for the unsupported and the supported waves both have regular
oscillations, with growing amplitudes that eventually saturate. However, the period
of the oscillation is different for the two cases. The oscillations for the unsupported
wave have a period of 70.2, those of the supported wave have a shorter period of
47.1, while the linear stability analysis predicts a period of 50.8. In this case, then, the
period of the supported wave is in much better agreement with the linear stability
analysis than that of the unsupported wave. However, this agreement would appear
to be fortuitous since significant nonlinear affects are present in the supported wave.
Figure 12 shows pressure profiles through one saturated oscillation for the supported
wave. Note that the shock pressure is at a maximum in the oscillation at t = 392.2
(figure 12a) and at a minimum at t = 426.0 (figure 12d). As the shock pressure drops
from high values, a secondary shock again forms behind the internal minimum in
the pressure (figure 12b). The primary shock pressure continues to drop, however, so
that the secondary shock begins to catch up with it (figure 12c). In figure 12(d) the
secondary shock is just about to overtake the primary shock. This merging of the
two shocks is responsible for the discontinuous jumps at the troughs in the shock
oscillations seen in figure 11(b). The resulting strengthened primary shock continues
to grow in strength due to a compression wave (figures 12e and 12f), until the shock
pressure once again reaches a maximum, is weakened by a rarefaction, and the whole
process repeats.
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Figure 12. Pressure profiles for the supported pathological detonation with E1 = 21.5 and E2 = 20,
at times (a) t = 392.2, (b) t = 411.4, (c) t = 422.5, (d) t = 426.0, (e) t = 432.8 and (f) t = 437.0.

For the steady waves, the unsupported and supported pathological detonations
are distinguished by the sonic nature of the downstream flow with respect to the
front (supersonic for unsupported waves and subsonic for supported waves). We now
investigate how the sonic nature of the flow changes for the pulsating waves. Given
the shock pressure, p+, we can determine the instantaneous detonation speed from
the equation for the jump in pressure across a shock:

p+

p−
= 1 +

2γ

γ + 1

(
D2

γp−
− 1

)
.

This gives

D =

(
γp−

[
1 +

γ + 1

2γ

(
p+

p−
− 1

)])1/2

.

We then define the Mach number of the flow with respect to the instantaneous shock
rest frame by

M =
(D − u)

c
.

In regions where M > 1 the flow is supersonic with respect to the front, and
information from these regions moves away from the shock, whereas for M < 1 the
flow is subsonic in the instantaneous shock rest frame and waves can catch up with
the front.

Figure 13 shows the profiles of the shock-attached Mach numbers at six times,
through one saturated oscillation of the unsupported wave when E1 = 21.5, together
with profiles of the pressure. The shock pressure is at a crest in the oscillations at
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Figure 13. Profiles of post-shock Mach numbers in the instantaneous shock rest frame (solid
lines) and pressure (dashed lines) for the unsupported pathological detonation with E1 = 21.5
and E2 = 20, at times (a) t = 497.4, (b) t = 502.6, (c) t = 509.3, (d) t = 539.9, (e) t = 559.3
and (f) t = 563.6.

t = 497.4 (figure 13a) and at a trough at t = 539.9 (figure 13d ). Even when the shock
pressure and speed are at a minimum, only a portion of the reaction zone is subsonic
with respect to the front and the downstream flow is at all times supersonic. When the
shock pressure is near its maximum value, and the front is moving very rapidly, the
flow becomes highly supersonic with respect to the front. Hence for the unsupported
pulsating wave the downstream flow can never affect the front, just as in the steady
case. Note that each oscillation produces a compression wave which strengthens into
a weak shock, but these weak shocks fall further and further behind the primary
shock due to the supersonic nature of the flow in the regions where they form.

Figure 14 shows the profiles of the shock-attached Mach numbers at six times,
through one saturated oscillation of the supported wave when E1 = 21.5. When
the shock pressure and speed are very near their maximum in the oscillation, the
downstream flow is now slightly supersonic with respect to the front (figure 14a),
and only the front portion of the reaction zone can affect the front. As the shock
speed drops, the downstream flow becomes subsonic. However, the maximum Mach
number, which occurs at the internal minimum of the pressure, can remain greater
than 1, and there exists a region around the minimum pressure where the flow
remains supersonic (figure 14b), so that the downstream flow can still not affect
the front. As the shock pressure and speed fall further, the maximum Mach num-
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Figure 14. As figure 13 but for the supported pathological detonation at times (a) t = 392.2,
(b) t = 397.5, (c) t = 403.9, (d) t = 426.0, (e) t = 432.0 and (f) t = 435.5.

ber drops below 1 and the entire flow becomes subsonic with respect to the front
(figure 14c), and the flow becomes more and more subsonic as the shock speed
drops even further. Now a compression wave, which forms behind the minimum
in the pressure and strengthens into a weak shock, accelerates towards the primary
shock due to the highly subsonic nature of the flow. The secondary shock eventu-
ally overtakes the front. (figure 14d), and the shock pressure and speed begin to
increase again. This results in the downstream flow becoming less subsonic with
respect to the front and eventually regions of the flow become supersonic again.
Note that, unlike the steady supported pathological detonation where the gradi-
ent of the pressure has a discontinuity at the minimum in the pressure, for the
pulsating supported wave the pressure profile is smooth at the internal pressure
minimum. This is due to the fact that such discontinuities in the thermodynamic
gradients move along characteristics (e.g. Fickett & Davis 1979), and once the wave
becomes unstable and the minimum in the pressure is no longer sonic with respect
to the front, the gradient discontinuity moves relative to the front and the pressure
minimum.

The shock pressure history for E1 = 22 is shown in figure 15. For this activation
temperature, the unsupported wave now dies to low pressures after a large-amplitude
oscillation. The shock and the reaction zone become decoupled as the shock pressure
drops to low values. This failure of the detonation is also seen for CJ detonations at
large activation temperatures (Short & Quirk 1997; Sharpe & Falle 1999). However,
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Figure 15. Shock pressure history for E1 = 22 and E2 = 20. (a) The unsupported pathological
detonation and (b) the supported pathological detonation.
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Figure 16. Shock pressure history for E1 = 23 and E2 = 20. (a) The unsupported pathological
detonation and (b) the supported pathological detonation.

the supported wave still has an oscillatory behaviour, with a very regular period of
45.4, so that the stability of the unsupported wave and supported wave are very
different in this case. The linear mode predicts a period of 52.5.

Figure 16 shows the shock pressure history when the activation temperature is
increased to E1 = 23. Now a large-amplitude oscillation followed by detonation
failure occur earlier for the unsupported wave, than for E1 = 22. The shock pressure
history for the supported detonation is still, however, oscillatory, but there is now
a clear period-doubling. The period between two crests or troughs of the same
amplitude is 82.3. There is still a single linear mode with a period of 57.9.

As E1 is increased further, the strong equilibrium pressure, and hence the piston
support, begins to drop (figure 6), until the steady detonation becomes CJ at E1 =
29.067. Hence as the support decreases, the supported wave will also be liable to
fail. Figure 17 shows the shock pressure histories for the supported detonation when
E1 = 25, 27 and 29. Note that in these cases an unstable high-frequency mode can
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Figure 17. Shock pressure histories for supported pathological detonations with (a) E1 = 25,
(b) E1 = 27 and (c) E1 = 29 (E2 = 20).

Q2

0

0.8

–30 –20 –10

0.6

0.2

0.4

0

P
re

ss
ur

e

Figure 18. Variation of pressure at strong equilibrium point (solid line), weak equilibrium point
(dashed line) and pathological point (dotted line) in the steady wave with Q2 (Q1 = 50, E1 = 25.26
and E2 = 30).

be seen at early times, and this becomes more unstable as E1 increases. The linear
stability analysis predicts that this mode becomes unstable at E1 = 24.23. As E1

increases it can be seen that the shock oscillations are becoming more irregular and
for E1 = 29 the detonation does indeed fail. However, at t = 654.1 the detonation
re-ignites, due to a large ‘explosion within the explosion’ which produces a very large
shock pressure. For supported waves, the failed detonation must at some point be
re-ignited since the piston is constantly adding energy into the system. After the
explosion the shock pressure quickly dies, but then begins to oscillate with a very
short period of about 6, with a growing amplitude.
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Figure 19. Shock pressure history for Q2 = −5 (Q1 = 50, E1 = 25.26 and E2 = 30).
(a) The unsupported pathological detonation and (b) the supported pathological detonation.
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Figure 20. Shock pressure history for Q2 = −10 (Q1 = 50, E1 = 25.26 and E2 = 30).
(a) The unsupported pathological detonation and (b) the supported pathological detonation.

5.2. Increasing endothermicity

In § 5.1, the steady detonation was distinctly pathological even near the stability
boundary, with large differences in the downstream states for the unsupported and
supported waves. As the detonations became more unstable (as E1 was increased)
the detonation became less distinctly pathological, and eventually the steady wave
becomes CJ. In this subsection we consider two questions. First, how does the
differences in the nonlinear stability of the unsupported and supported waves change
as the steady detonations changes from being CJ, where there is no difference in the
unsupported and supported waves, to pathological? Secondly, how does the stability
of the two waves change if the detonation becomes more distinctly pathological as it
becomes more unstable, in contrast to the previous case?

In order to accomplish this, we systematically change the heat of reaction of the
second reaction, Q2, while keeping the other parameters fixed. Clearly, for Q2 = 0 there
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Figure 21. Shock pressure history for Q2 = −15 (Q1 = 50, E1 = 25.26 and E2 = 30).
(a) The unsupported pathological detonation and (b) the supported pathological detonation.
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Figure 22. Shock pressure history for Q2 = −20 (Q1 = 50, E1 = 25.26 and E2 = 30).
(a) The unsupported pathological detonation and (b) the supported pathological detonation.

is no endothermic stage and hence the steady detonation is CJ, but for increasing
|Q2|, the endothermic stage becomes more pronounced and hence the detonation
becomes more distinctly pathological. Secondly, the linear stability analysis (Sharpe
1999b) shows that increasing the degree of endothermicity makes the detonation
more unstable. Here we set Q1 = 50 and then we choose E1 = 25.26 so that the CJ
detonation with Q2 = 0 is neutrally stable (Sharpe 1997). We set E2 = 30.

Figure 18 shows how the pressure at the strong and weak equilibrium points and
at the sonic point varies with Q2. For Q2 = 0 the self-sustaining steady wave is CJ, so
that the three pressures are the same there. As the degree of endothermicity increases
and hence the difference between the maximum and final values of the heat release
in the wave increases, the strong and weak pressures diverge. For smaller values of
|Q2| there is little difference in the strong and weak equilibrium pressures and hence
we expect only a small difference in the nonlinear evolution of the supported and
unsupported waves. Since as |Q2| increases so does the difference in the downstream
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Figure 23. Shock pressure histories for supported pathological detonations with (a) Q2 = −30
and (b) Q2 = −40 (Q1 = 50, E1 = 25.26 and E2 = 30).

pressures, we expect the differences in the nonlinear stability of the two waves to
become more pronounced.

Figure 19 shows the shock pressure histories when Q2 = −5. For this case there is
little difference in the equilibrium pressures of the unsupported and supported steady
detonations. From figure 19, it can be seen that the nonlinear stability of the two
waves also is very similar, apart from small differences in the peak shock pressures.
The pressure histories indicate a period-doubled oscillation with a period of 151.9 (i.e.
the time between two consecutive high/low amplitude crests or troughs). For these
parameters the linear stability analysis predicts a single mode with period 81.1.

The shock pressure histories for Q2 = −10 are shown in figure 20. For both
the unsupported and supported waves, the oscillations are now very irregular. The
histories for the two cases are still qualitatively similar, but with larger differences in
the values and positions of the peaks and troughs in the oscillations. These differences
could lead to very different shock pressure histories for the two waves at very large
times. The linear stability analysis now predicts a period of 85.6.

Figures 21 and 22 show the shock pressure histories for Q2 = −15 and Q2 = −20.
In these cases the unsupported wave fails, while the supported detonation continues
to propagate, again due to the secondary shock wave formed in the endothermic stage
overtaking the dying primary shock and re-igniting the detonation. The fundamental
linear mode has a period of 93.3 and 106.1 for Q2 = −15 and −20 respectively.
Note also that a high frequency becomes unstable, which can be seen at early times
in the figures. The linear analysis predicts that this mode becomes unstable below
Q = −14.2 and the predicted period is 8.5 for Q = −15 and 8.3 for Q = −20.

Although the detonation is becoming more unstable as the degree of endothermicity
increases, the oscillation for the supported wave is actually becoming more regular
with a shorter period. This is due to the effect of the increasing downstream pressure
and velocity, and hence piston support (figure 18) with increasing |Q2|. Figure 23
shows the histories for the supported waves when Q2 = −30 and Q2 = −40. In
these cases the shock pressure oscillates with a nearly constant period. However,
the amplitudes are quite irregular, and it appears that a very low-frequency mode
is also present. Note that the high-frequency mode is now very unstable, and seems
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Figure 24. Migration of the fundamental linear mode as the degree of overdrive is varied when
E1 = 35, E2 = 50. (a) Frequency versus growth rate, (b) growth rate versus f − 1 (Sharpe 1999b).

to be occasionally making its presence felt, even at late times. Hence in the case
of increasing the degree of endothermicity, the supported detonation cannot die, no
matter how unstable it is.

5.3. Increasing degree of overdrive

We now consider overdriven detonations, i.e. piston-supported detonations with f > 1.
According to the linear stability analysis (Sharpe 1999b), the linear response to one-
dimensional perturbation is very sensitive to the degree of overdrive near f = 1,
and increasing the overdrive can actually make the detonation more unstable. This
is in contrast to systems where the self-sustaining steady wave is of the CJ type,
when the linear spectrum is not especially sensitive to the degree of overdrive near
the CJ speed, and increasing the overdrive always makes the detonation more stable
(Lee & Stewart 1990). For instance, figure 24 (taken from Sharpe 1999b) shows
the change in the fundamental (lowest frequency) linear mode as f is varied, when
E1 = 35 and E2 = 50. Here Re (σ) is the growth rate and Im (σ) the frequency
of the disturbance. From figure 24, it can be seen that, according to the linear
stability analysis, increasing the overdrive from the pathological speed has the effect
of alternately stabilizing, i.e. decreasing the growth rate, destabilizing, i.e. increasing
the growth rate, and then stabilizing the steady detonation wave to one-dimensional
disturbances. The detonation is stable at high enough overdrive.

We now investigate how increasing the overdrive affects the stability in the nonlinear
simulations. Here we take E1 = 20.96 and E2 = 20, so that the pathological wave
is linearly neutrally stable (cf. figure 7), and hence the effect on the stability of the
wave will be most clearly shown. Figure 25 shows the shock pressure histories for
overdriven detonations with f = 1.00001, 1.0001, 1.001, 1.01, 1.1 and 1.2. It can be
seen immediately from this figure that the detonation stability is very sensitive to
the degree of overdrive near f = 1, in agreement with the linear stability analysis.
Secondly, from figures 25(a) and 25(b), it can be seen that for very small increases
of the overdrive the detonation is stable, while further increases make the detonation
unstable again (figures 25d, 25e). For large enough overdrive, however, the detonation
is stable (figure 25f). The shock pressure history for f = 1.001 (figure 25c) is rather
peculiar. This value of the overdrive is near a stability boundary: the detonation
is stable at lower overdrives and unstable at higher overdrives. However, instead of
having a neutrally stable profile, like that in figure 7, there appear to be competing
stabilizing and destabilizing effects.
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Figure 25. Shock pressure history for overdriven detonations with (a) f = 1.00001, (b) f = 1.0001,
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6. Conclusions
In this paper we have performed one-dimensional time-dependent calculations of

pathological detonations in order to determine the nonlinear stability of such waves.
We have shown that, provided the differences in the downstream states are not
too small, the nonlinear evolution of the unsupported and supported pathological
detonations, for fixed parameters, can be very different, even near stability boundaries.
The unsupported wave can easily die, due to the downstream fluid having little effect
on the detonation front. This is compounded by the endothermic stage of burning
becoming subsonic with respect to the shock as it weakens and slows down, and thus
withdrawing further support from the detonation front. In these cases, however, the
supported detonation can remain oscillatory, with a regular or irregular period. Indeed,
supported detonations have a coupled double instability, due to the instability of the
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primary shock and also the formation of a secondary shock in the endothermic stage
of burning, which strengthens and weakens. This secondary shock can overtake and
strengthen the primary shock and re-ignite the detonation before it dies completely.

Secondly, we have shown, in agreement with the predictions of the linear stability
analysis, that the stability of supported detonations is very sensitive to the detonation
speed near the self-sustaining pathological speed, and that increasing the overdrive
can make the detonation more unstable.

It would be perhaps more interesting to perform two-dimensional numerical simu-
lations of such pathological waves in order to study the cellular detonation instability.
The one-dimensional simulations performed in this paper suggest that the two-
dimensional stability properties of unsupported and supported pathological det-
onations may be quite different to one another. In particular, the size and regularity
of the cells could be very different. Indeed, a multi-dimensional linear stability analysis
suggests that the cell size is very sensitive to the degree of overdrive (Sharpe 1999b).
Unfortunately, the large amount of resolution required to remove the dependence of
the numerically calculated cell size on the mesh spacing, combined with the very large
natural cell sizes (usually between one and two orders of magnitude greater than
the steady one-dimensional reaction length) and the very large space and time scales
over which the detonation settles into the natural cell size configuration, make such
calculations prohibitive.

G.J.S. was supported by PPARC during the course of this work.
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